BSR Mid-Winter Meeting Timetable and Abstracts Rheology of Active, Evolving and Responsive Systems 12th and 13th December 2022

11	Monday	Dr Charley Schaefer	Flow-Induced Self-Assembly of Native Silk Protein	
C1	10.10-10.50 Monday	Dr Manlio Tassieri	Machine learning opens a doorway for microrheology with	
	10.50-11.15 (Glasgow)		optical tweezers in living systems	
12	Monday	Dr Anders Aufderhorst-	Molecular and Mesoscale Mechanics of Folded Protein	
	11.20-12.00	Roberts (Durham)	Hydrogels	
C2	Monday	Dr Leandro Rizzi (Viçosa,	Heterogeneities and non-markovian walks in the	
	12.00-12.25	Brazil)	microrheological response of gels	
C3	Monday	Dr Carl Reynolds	Structure and rheology of electrode slurries and implications	
	12.25-12.50	(Birmingham)	for battery manufacture	
C4	Monday	Frankie Haywood (Bristol)	A new HPHT rheometer for measuring the viscosity of	
	12.50-13.15		volatile-bearing magmas.	
C5	Monday	Dr Paul Grassia	Three Bubbles Good, Two Bubbles Better	
	14.00-14.25	(Strathclvde)		
C6	Monday	Dr Patrick Ilg	Simulating the Flow of Ferrofluids with Multiparticle	
	14.25-14.50	(Reading)	Collision Dynamics	
C7	Monday	Joshua Cummings	Numerical Investigation of Non-Newtonian Fluid Flows in a	
	14.50-15.15	(Strathclyde)	Multi-Inlet Sudden Expansion	
13	Monday	Dr Kirsty Wan (Exeter)	Controllable self-propulsion at low-Reynolds number	
	15.30-16.10			
C8	Monday	Dr Becky Hudson	Characterising the evolving rheological properties of gelling	
	16.10-16.35	(Swansea)	materials using chirp protocols on a stress controlled	
			rheometer	
C9	Monday	Elton Lima Correia	2D glass transition of Janus particle-laden interface	
	16.35-17.00	(Oklahoma, USA)		
	Monday 17.00		Close	
	Tuesday 10.00		Re-Opens	
14	Tuesday	Dr Davide Michieletto	Topologically Active Polymers	
	10.05-10.45	(Edinburgh)		
C10	Tuesday	Dr Prachi Thareja	k-carrageenan hydrogels for 3D printing and water	
	10.45-11.10	(Gandhinagar, India)	remediation	
15	11 20 12 10	Prot Alan Smith	אופס-ussolution: Simultaneous Measurement of Kneology	
C11	11.30-12.10 Tuosday	(Huddersheid)	and Drug Release	
	10-12 25	(Swansoa)	viscoalastic suspensions	
C12	Tuesday	Dr Abarasi Hart (Sheffield)	Effect of Polyvinylidene Fluoride Molecular Weight on	
012	12 35-13 00	Di Abarasi nare (shemela)	Rheology and Microstructure of Slurry of	
	12.55 15.00		LiNi0.8Mn0.1Co0.102 and Carbon Black	
16	Tuesdav	Prof Stephen Wilson	BSR Annual Award winner. 2022	
-	13.30-14.10	(Strathclyde)	··· ··· ··· ··· ··· ··· ··· ··· ··· ··	
17	Tuesday	Dr Joseph Cousins	Vernon Harrison Prize winner, Mathematical modelling and	
	14.10-14.45	(Strathclyde)	analysis of industrial manufacturing of liquid crystal displays	
	14.45		close	

	Abstracts		
	presenter	title	
11	Dr Charley Schaefer	Flow-Induced Self-Assembly of Native Silk Protein	
	Silk fibres have an out-of-equilibrium semi-crystalline structure that emerges in response to shear and extensional flow. This process of natural silk spinning requires orders of magnitude less energy input than for the industrial spinning of synthetic polymer fibres. To understand how this class of polymers responds to strong flow, we developed a coarse-grained (quasi-)single-chain model that describes the intermolecular reversible crosslinks in an effective environment. Through simulations, and supported by analytical approximations, we found that the stochastic opening and closing of reversible crosslinks leads to the emergence of highly disperse dynamical chain conformations. We found that the fraction of highly stretched chain segments, which are needed to nucleate crystals, is finely controlled and ontimised by both the molecular design of the polymer and by the flow rate.		
12	Dr Anders Aufderhorst- Roberts	Molecular and Mesoscale Mechanics of Folded Protein Hydrogels	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
13	Dr Kirsty Wan	Controllable self-propulsion at low-Reynolds number	
	Many small aquatic organisms self-propel using flexible appendages called cilia, arranged in diverse topologies and configurations. Whenever multiple cilia exist in close proximity they will invariably interact, leading to the emergence of many types of local and global coordination patterns. Adjacent cilia can communicate physically through the fluid, but they can also do so via elastic or cytoskeletal linkages through the cell or tissue surface. In this talk we will consider the strategies and consequences of distinct modes of ciliary coordination and propulsion in diverse organisms ranging from single-celled eukaryotes (protists), to the ciliated larvae of marine invertebrates. We will also discuss how ciliary arrays select different modes of synchrony or metachrony, and the implications of this for controlled navigation.		

14	Dr Davide Michieletto	Topologically Active Polymers	
	Polymer physics successfully describes most of the polymeric materials that we encounter everyday. In spite of this, it heavily relies on the assumption that polymers do not change topology (or architecture) in time or that, if they do alter their morphology, they do so in equilibrium. This assumption spectacularly fails for DNA in vivo, which is constantly topologically re-arranged by ATP-consuming proteins within the cell nucleus. Inspired by this, we study study entangled systems of DNA which can selectively alter their topology and architecture in time and may expend energy to do so. Solutions of topologically active DNA can display unconventional viscoelastic behaviours which I will discuss in this talk.		
15	Prof Alan Smith	Rheo-Dissolution: Simultaneous Measurement of Rheology and Drug Release	
	Prof Aian Smith Drug Release Drug delivery systems that undergo sol-gel transitions <i>in situ</i> can be used to increase drug retention time at the desired physiological site of action and control drug release. The rheological behaviour of polymers used in such formulations, when exposed to physiological conditions, can therefore have a great impact upon drug release rates and ultimately affect the efficacy of the drug. Rheological measurements of gelation and drug release from such systems, are usually performed separately, which is not particularly representative of the realistic scenario. This is due to difficulties associated with changing the chemical environment to simulate initial contact with physiological fluids during rheological measurements using existing methods. Controlling the chemical environment is critical for formulations that have rapid sol-gel transitions mediated by changes in pH or presence of ionic crosslinkers in physiological fluids. Here, we have developed a 3D printed rheo-dissolution cell (consisting of a fine mesh and a 55 ml flow though reservoir) which can replace the lower plate of rheometer and allows samples to make contact with simulated physiological measurements are in process. Furthermore, the physiological fluid can be sampled during the rheological measurements, allowing quantification of drug release from the <i>in situ</i> gel formulation. This technique provides an insight to the impact changes in rheological behaviour have on the release of drugs in real-time and could be utilised in early stages of the development process when designing <i>in situ</i> gelling drug delivery systems. The wider application of this system is the ability to test any polymer, for many different industrial applications, where there may be a need for rapid or slow gelation while monitoring molecules that are taken up or released from		
16	Prof Stephen Wilson BSR Annual Award Winner	BSR ANNUAL AWARD LECTURE 2022	
	By employing a judicious combination of analytical (often asymptotic) and numerical methods it is sometimes possible perform detailed analyses of paradigm problems which are able to bring greater understanding of both the underlying physics and/or the industrial applications of practically important situations. In this talk I will describe a number of such investigations arising in the study of liquid crystals, thixotropic fluids, and thin-film flow (notably rivulet flow) of non-Newtonian fluids (see, for example, references [1]-[7]). In particular, this talk describes various aspects of joint work with a number of colleagues, notably Dr Brian Duffy, Prof. Nigel Mottram, and Dr David Pritchard, and former PhD students Fatemah Al Mukahal, Judit Quintains Carou, Andrew Croudace, Catriona McArdle, and Yazariah Yatim, all of whom I thank for their unique and invaluable contributions.		

	 [1] Yatim, Y.M., Wilson, S.K. law fluid" J. Non-Newt. Fluid [2] McArdle, C.R., Pritchard, antithixotropic fluid" J. Non [3] Pritchard, D., Duffy, B.R. inclined plane" J. Eng. Math [4] Pritchard, D., Wilson, S.K. slowly varying channel: the [5] Al Mukahal, F.H.H., Duffy Phys. Rev. Fluids 3 083302 ([6] Pritchard, D., Croudace, Rev. Fluids 5 013303 (2020) [7] Cousins, J.R.L., Duffy, B.F. for a static ridge of nematic Roy. Soc. Lond. A 478 (2259) 	 , Duffy, B.R. "Unsteady gravity-driven slender rivulets of a power-d Mech. 165 1423 (2010) D., Wilson, S.K. "The Stokes boundary layer for a thixotropic or -Newt. Fluid Mech. 185-186 18 (2012) , Wilson, S.K. "Shallow flows of generalised Newtonian fluids on an . 94 115 (2015) C., McArdle, C.R. "Flow of a thixotropic or antithixotropic fluid in a weakly advective regime" J. Non-Newt. Fluid Mech. 238 140 (2016) y, B.R., Wilson, S.K. "Rivulet flow of generalized Newtonian fluids" 2018) A.I., Wilson, S.K. "Thixotropic pumping in a cylindrical pipe" Phys. R., Wilson, S.K., Mottram, N.J. "Young and Young-Laplace equations liquid crystal, and transitions between equilibrium states" Proc.) 20210849 (2022)
17	Dr Joseph Cousins Vernon Harrison Prize winner	Mathematical modelling and analysis of industrial manufacturing of liquid crystal displays
	WinnerLiquid crystal displays (LCDs) are now ubiquitous in every aspect of modern life. Televisions, computer monitors, mobile phones and tablets are now used for hours every day by most of the world's population. Each of these LCDs makes use of the optoelectrical properties of a thin layer of nematic liquid crystal (nematic), which is now widely manufactured using the One Drop Filling (ODF) method. In the ODF method, nematic is dispensed onto a lower substrate in the form of droplets, which are allowed to equilibrate and then an upper substrate is lowered towards the droplet-laden lower substrate, squeezing the droplets together to form the thin layer of nematic. Although the efficiency and speed of the ODF method have significantly improved LCD manufacturing, the method involves large nematic flow speeds, which may cause transient flow-driven distortion of the nematic molecules at the substrates from their required orientation. This may then lead to permanent or semipermanent flow-driven misalignment of the orientation of the molecules in crucial substrate alignment layers, which may, in turn, degrade the optical properties of the final display. Indeed, flow-driven misalignment of the orientation of the molecules in the alignment layers may be the cause of unwanted optical effects that can occur in the ODF method known as "ODF mura". Motivated by a need for further understanding of flow-driven misalignment of the orientation of the 	
C1	Manlio Tassieri (Glasgow)	Machine learning opens a doorway for microrheology with optical tweezers in living systems
	It has been argued [Tassieri, Soft Matter, 2015, 11, 5792] that linear microrheology with optical tweezers (MOT) of living systems "is not an option", because of the wide gap between the observation time required to collect statistically valid data and the mutational times of the organisms under study. Here, we have taken a first step towards a possible solution of this problem by exploiting modern machine learning (ML) methods to reduce the duration of MOT measurements from several tens of minutes down to one second. This has been achieved by focusing on the analysis of computer simulated trajectories of an optically trapped particle suspended into a set of Newtonian fluids having viscosity values spanning three orders of magnitude, i.e. from 10^{-3} to $1 \text{ Pa} \cdot \text{s}$. When the particle trajectory is analysed by means of conventional statistical mechanics principles, we explicate for the first time in literature the relationship between the required duration of MOT experiments (T _m) and the fluids relative	

	viscosity (η_r) to achieve an uncertainty as low as 1%; i.e., $T_m \cong 17\eta_r^3$ minutes. This has led to a further evidence explaining why conventional MOT measurements commonly underestimate the materials' viscoelastic properties, especially in the case of high viscous fluids or soft-solids such as gels and cells. Finally, we have developed a ML algorithm to determine the viscosity of Newtonian fluids that uses feature extraction on raw trajectories acquired at a kHz and for a duration of only one second, yet capable of returning viscosity values carrying an error as low as ~0.3% at best; hence the opening of a doorway for MOT in living systems.			
C2	Leandro Rizzi (Brazil)	Heterogeneities and non-markovian walks in the microrheological response of gels		
	I will present a simple and self-consistent approach based on microrheology [1] that allows one to obtain the mechanical response of viscoelastic materials during their gelation transition. By considering a non-markovian Langevin equation, I obtain general expressions for the mean-squared displacement and the time-dependent diffusion coefficient that take into account the heterogeneities of the gel. I will show that these quantities can be directly related to the memory kernels and the response function and provide estimates for the complex shear modulus and the complex viscosity of the material. The approach is validated by applying it to describe experimental data on chemically cross-linked polyacrylamide through its sol-gel transition.			
С3	Carl Reynolds (Birmingham)	Structure and rheology of electrode slurries and implications for battery manufacture		
	Slurry casting is the most common method of electrode manufacture, and with heavy investment into current manufacturing lines, it will be for some time. It is vital to optimise these lines for best performance and allow rapid adoption of novel, more sustainable, drop-in technologies. In slurry casting, active materials are mixed into a slurry and coated onto a current collector which is then dried, calendared, and assembled into a cell. Currently, these stages are optimised by trial and error and there is a need for advanced metrology and process understanding to enable in-line control, rapid optimisation, and reduction of wastage in time and materials.			
	The rheological properties of the slurry are key in the suite of metrology for process control during electrode manufacture, as they offer important insights into the slurry structure and are vital to the microstructure of the final coating. High slurry viscosity creates excess pressure and limits coating speed, elasticity causes instabilities leading to coating defects and high flow causes slumping leading to thin, poorly structured coatings. However, due to differing solvent systems and components, and the complex nature of the many competing interactions, finding the source of these detrimental rheological properties can be difficult. We discuss the rheology of industrial formulations, the underlying structure that gives rise to these flow properties and how rheological methods, including shear and extension, can be used for process control.			
C4	Frankie Haywood (Bristol)	A new HPHT rheometer for measuring the viscosity of volatile- bearing magmas.		
	Magma rheology exerts a primary control on a wide range of volcanic processes, from the extraction of magma in the deep earth, during its transport towards the surface, and finally the way it is extruded at the surface as a gentle effusive flow or a violent explosive eruption. Throughout this journey, the magma experiences significant changes in pressure and temperature, that affect the viscosity of the melt, but also the role of crystal and volatile			

	phases (especially H2O) in the bulk rheology. It is clear that reliable measurements of the viscosity of volatile-bearing magmatic magmas at these high pressures and high temperatures (HPHT) are needed to constrain models and predict transport and eruptive behaviour. However, current viscosity measurements of high temperature materials are often limited to anhydrous, ambient pressure conditions as a consequence of the difficulty posed in adding a pressurised chamber to a rheometer. Here, we introduce a new HPHT rheometer capable of achieving pressures and temperatures up to 250 MPa and 1200C and measuring viscosities in the range 100Pas-30,000Pas. The rheometer has a concentric cylinder configuration which is able to achieve HPHT conditions due to a magnetic coupling which links an internal spindle to an external rheometer head. The HPHT rheometer produces viscosity measurements with an uncertainty of ±5%, the technical features and challenges that contribute to this uncertainty			
C5	Paul Grassia (Strathclyde)	Three Bubbles Good, Two Bubbles Better		
	an external rheometer head. The HPHT rheometer produces viscosity measurements with an uncertainty of ±5%, the technical features and challenges that contribute to this uncertainty will be presented.Paul Grassia (Strathclyde)Three Bubbles Good, Two Bubbles BetterThe flow of just three bubbles along a channel captures many of the features of foam flow in porous media. Here a situation is considered in which bubbles are arranged in a staircase fashion zig-zagging across a channel (two bubbles attaching to one channel wall, but just a single bubble attaching to the other). The resulting topological asymmetry also implies asymmetry in the drag forces associated with foam film motion. When the system is driven fast enough, the imbalance in drag can cause the staircase structure to break. Bubbles then exchange neighbours during a so called T1 topological transformation. Previous work [1,2] has shown that the three-bubble system is sufficiently complex that it admits different ``flavours'` of T1 transformation, variously called T1c, T1u, T1l, and so on. Which flavour of T1 is selected depends on bubble sizes relative to channel size and also upon imposed driving pressure. All that previous work however focused solely on the first T1 that the three-bubble system encountered [1,2]. The present contribution therefore examines the entire sequence of T1 transformations that a three-bubble system can undergo. It is revealed that that the daughter states produced after the first T1 tend themselves to be unstable, meaning they are short-lived intermediates which break again via additional T1 transformations. Eventually the three bubble system reaches a stable final configuration that can then simply flow along. However, like the T1 transformations that produced them, these final configurations however is topological symmetry: in the final flowing structure, equal numbers foam films attach to			

C6	Patrick Ilg (Reading)	Simulating the Flow of Ferrofluids with Multiparticle Collision Dynamics
	Ferrofluid flow is fascinating external magnetic fields. No biomedicine have renewed focus on small-scale behavio	g since their fluid properties can conveniently be manipulated by ovel applications in micro- and nanofluidics as well as in the interest in the flow of colloidal magnetic nanoparticles with a our. Traditional flow simulations of ferrofluids, however, often use

	simplified constitutive models and do not include fluctuations that are relevant at small scales. Here, we address these challenges by proposing a hybrid scheme that combines the multi- particle collision dynamics method for modelling hydrodynamics with Brownian Dynamics simulations of a reliable kinetic model describing the microstructure, magnetization dynamics and resulting stresses. Since both multi-particle collision dynamics and Brownian Dynamics are mesoscopic methods that naturally include fluctuations, this hybrid scheme presents a promising alternative to more traditional approaches, also because of the flexibility to model different geometries and modifying the constitutive model. The scheme was tested in several ways. Poiseuille flow was simulated for various model parameters and effective viscosities were determined from the resulting flow profiles. The effective, field-dependent viscosities are found to be in very good agreement with theoretical predictions. We also study Stokes' second flow problem for ferrofluids. For weak amplitudes and low frequencies of the oscillating plate, we find that the velocity profiles are well described by the result for Newtonian fluids at the corresponding, field-dependent viscosity. We also illustrate the new method for the benchmark problem of flow around a square cylinder. Interestingly, we observe that the length scale of the recirculation region is increased, whereas the drag coefficient is decreased in ferrofluids when an external magnetic field is applied compared with the field-free case at		
С7	Joshua Cummings (Strathclyde)	Numerical Investigation of Non-Newtonian Fluid Flows in a Multi- Inlet Sudden Expansion	
	A numerical investigation of planar sudden expansion, w house finite volume solver [described by the power-law importance of the spacing r The spacing ratio between t vortices, which lead to vorte become asymmetric and lat viscoelastic fluids of constan model. Initially, creeping flo considered to investigate th vortex-stabilising effects du observations of other studie [3, 4]. Intermediate vortices flow conditions, however in numbers (Wi). To account fo interactions, numerical simu which is representative of re-	f the flow of non-Newtonian fluids through a two-dimensional with three horizontal inlets of equal width is conducted using an in- [1]. We first investigate flows of inelastic non-Newtonian fluids a model for a range of multi-inlet configurations, highlighting the atio between the inlets and its influence on the resulting flow [2]. the inlets was found to be responsible for the formation of internal ex interactions that affect the critical conditions causing the flow to the viscosity described by the upper-convected Maxwell (UCM) we conditions (i.e Reynolds number, Re, tending to zero) are to effects of elasticity, neglecting the influence of inertia, where e to elasticity have been observed. This is in agreement with es that employ single-inlet planar sudden expansion configurations is at the sections between the inlets are not observed for creeping- teresting interactions are observed for varying Weissenberg or inertial effects and investigate further the influence of vortex ulations are performed at constant elasticity number (El = Wi/Re), ealistic experimental conditions.	
	[1] A. Afonso, P. J. Oliveira, approach in the finite-volun	F. T. Pinho, and M. A. Alves, "The log-conformation tensor ne method framework," JNNFM, vol. 157, no. 1-2, pp. 55–65, 2009.	
	[2] C. G. Carson, R. J. Poole, flow of power-law fluids," J	K. Zografos, and M. S. Oliveira, "Multiple inlet sudden expansion NNFM, submitted, 2022.	
	[3] R. J. Poole, M. A. Alves, P. J. Oliveira, and F. T. Pinho, "Plane sudden expansion flows or viscoelastic liquids," JNNFM, vol. 146, no. 1-3, pp. 79–91, 2007.		
	[4] G. N. Rocha, R. J. Poole, through a symmetric 1:4 ex	and P. J. Oliveira, "Bifurcation phenomena in viscoelastic flows pansion," JNNFM, vol. 141, no. 1, pp. 1–17, 2007.	

C8	Dan Curtis (Swansea)	materials using the evolving rheological properties of gelling materials using chirp protocols on a stress controlled rheometer
	Frequency modulated (chirp characterisation of viscoelas 2018). However, stress-cont sensitive or gelling materials the study of such materials. controlled conditions suffer protocols, can be removed baseline correction is not st seeking the complex viscosi $G^*(\omega)$, to overcome this pro- biopolymer gelation.) waveforms have previously been used for the rapid stic materials using strain-controlled protocols (e.g. Geri et al., trolled rheometric protocols are often more appropriate for strain s. Here, we establish a stress-based chirp protocol (σ -OWCh) for Experiments conducted on a single head rheometer under stress- from an inherent strain offset which, for conventional rheometric using a baseline correction. Removing the strain offset using a raightforward in chirp based rheometry. Therefore, we propose ty, η^* (ω), as an intermediate parameter for the complex modulus, oblem. The σ -OWCh protocol is then demonstrated in the study of
C9	Elton Lima Correia (Oklahoma)	2D glass transition of Janus particle-laden interface
	energy, when compared to up new possibilities for now become subjected to deforr Therefore, it is important to interfaces. In this work, we monolayers formed at the a with an interface rheomete compressions on a Langmui rheology as a tool to unders calculating the time relaxati that a glass transition is taki	homogenous colloidal particles, and their dual characteristic open el applications. In many such applications, interfacial materials nations that produce compression/expansion and shear stresses. understand the impact that the Janus character brings to study the microstructure of two-dimensional (2D) Janus particle ir-water interface and examine the interfacial shear viscoelasticity r that was adapted for in situ surface pressure control via r trough. We extend concepts from bulk rheology to interfacial stand the viscoelastic behavior of the monolayer. Finally, by fon spectrum from the measured 2D dynamic moduli, we conclude ing place by analogy.
C10	Prachi Thareja (Gandhinagar, India)	k-carrageenan hydrogels for 3D printing and water remediation
	-	

	are further tested as column packing in a syringe for the adsorption of single and multicomponent dye systems.		
C11	Francesco Del Giudice	Space-time Evolution of Microfluidic Crystals from dilute viscoelastic suspensions	
	Suspensions are generally c Stokes relation, valid for no showed that this is generally in volume. We here show th characteristic lateral side 5 hydrodynamic interactions viscoelastic liquid as suspen crystals, specifically strings mediated hydrodynamic int is mainly controlled by geor liquid. The microfluidic cryst distances while flowing in a between consecutive partic	onsidered to be diluted when they stop obeying the Einstein- n-interacting hard spheres. Experimental results from past works y true when the bulk particle concentration is less than around 5% nat rigid spherical particles confined in a microfluidic device with times larger than the particle diameter display strong even at bulk concentrations as small as 0.25% in volume. By using a ding medium, we observe the formation single-line microfluidic of equally-spaced particles, generated by the viscoelasticity- eractions under pipe shear flow. The spacing between the particles netrical parameters, and by the type of viscoelastic suspending tal is formed because of a space-time evolution of particle straight channel, resulting from the hydrodynamic interactions les mediated by the fluid viscoelasticity.	
C12	Abarasi Hart (Sheffield)	Effect of Polyvinylidene Fluoride Molecular Weight on Rheology and Microstructure of Slurry of LiNi0.8Mn0.1Co0.1O2 and Carbon Black	
	One of the critical unit oper Electrode slurries are compl varies greatly with polyvinyl of varying microstructure. T kg.mol-1, 530 kg.mol-1, 534 behaviour, yield stress, part network of particles of LiNic polymer with electrode slur (NMP). The slurries rheolog With increasing PVDF MW, (i.e., PVDF dissolved NMP), Based on yield stresses and tend towards Newtonian be PVDF600 is moderately she characteristics. CB particles in PVDF-NMP solutions, cau electrode slurry. In addition network structures formed MW showing the greatest s Microstructurally, Scanning and sedimentation of NMC8 slurries. Electrode films fabr NMC811 particles dispersed particles bound together by	ations in the manufacturing of Li-ion batteries is slurry processing. lex colloidal systems and highly viscoelastic, and their rheology idene fluoride (PVDF) molecular weight (MW), resulting in coatings his study examined the influence of PVDF MW (180 kg.mol-1, 275 kg.mol-1, 600 kg.mol-1, and 1300 kg.mol-1) on the flow icle-polymer interactions and electrode film microstructure due to 0.8Mn0.1Co0.1O2 (NMC811) and carbon black (CB) bridge by ry comprising of NMC811, CB, PVDF and N-methyl-2-pyrrolidone ical behaviour was modelled using the Herschel-Bulkley equation. there is a significant increase in the viscosity of the liquid phase which was fitted with the empirical Mark–Houwink equation. flow behaviour indexes, PVDF180 and PVDF275 electrode slurries thaviour, PVDF530 and PVDF534 are highly shear-thinning, ar-thinning and PVDF1300 approximates Bingham plastic flow form a percolated particle network based on bridging flocculation sing a high yield stress that is higher than the corresponding , PVDF MW has a significant impact on the integrity of the internal between NMC811 and CB particles with the most adsorbed PVDF tructural breakdown and shear-thinning behaviour. Electron Microscope (SEM) revealed cracks on the CB-PVDF layer 811 particles in cathode films prepared with PVDF180 and PVDF275 ricated with PVDF530, PVDF534, PVDF600 and PVDF1300 have and embedded within the percolated particle network of the CB PVDF.	